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ABSTRACT

Regression testing is an expensive maintenance process
directed at validating modified software. Regression test
selection techniques attempt to reduce the cost of re-
gression testing by selecting tests from a program’s ex-
isting test suite. Many regression test selection tech-
niques have been proposed. Although there have been
some analytical and empirical evaluations of individ-
ual techniques, to our knowledge only one comparative
study, focusing on one aspect of two of these techniques,
has been performed. We conducted an experiment to
examine the relative costs and benefits of several regres-
sion test selection techniques. The experiment exam-
ined five techniques for reusing tests, focusing on their
relative abilities to reduce regression testing effort and
uncover faults in modified programs. Our results high-
light several differences between the techniques, and ex-
pose essential tradeoffs that should be considered when
choosing a technique for practical application.
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1 INTRODUCTION

As developers maintain a software system, they peri-
odically regression test it, hoping to find errors caused
by their changes. To do this, developers often create an
initial test suite, and then reuse it for regression testing.
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The simplest regression testing strategy, retest all, re-
runs every test in the initial test suite. This approach,
however, can be prohibitively expensive — rerunning
all tests in the test suite may require an unacceptable
amount of time. An alternative approach, regression
test selection, reruns only a subset of the initial test
suite. Of course, this approach is imperfect as well — test
selection techniques can have substantial costs, and can
discard tests that could reveal faults, possibly reducing
fault detection effectiveness.

This tradeoff between the time required to select and
run tests and the fault detection ability of the tests that
are run is central to regression test selection. Because
there are many ways in which to approach this tradeoft,
a number of test selection techniques have been pro-
posed (e.g., [1, 4, 8,9, 12, 15, 21]). Although there have
been some analytical and empirical evaluations of indi-
vidual techniques [4, 18, 20, 21], to our knowledge only
one comparative study, focusing on one aspect of two of
these techniques, has been performed [16].

We hypothesize that different regression test selection
techniques create different tradeoffs between the costs
of selecting and executing tests, and the need to achieve
sufficient fault detection ability. Because there have
been few controlled experiments to quantify these trade-
offs, we conducted such a study. Our results indicate
that the choice of regression test selection algorithm sig-
nificantly affects the cost-effectiveness of regression test-
ing. Below we review the relevant literature, describe
the test selection methods we examined, and present
our experimental design, analysis, and conclusions.

2 REGRESSION TESTING SUMMARY AND
LITERATURE REVIEW

2.1 Regression Testing

Let P be a procedure or program, let P’ be a modified
version of P, and let T" be a test suite for P. A typical
regression test proceeds as follows:

1. Select T" C T, a set of tests to execute on P’.
2. Test P’ with T”, establishing P’’s correctness with
respect to T".



3. If necessary, create 7", a set of new functional or
structural tests for P’.

4. Test P’ with T", establishing P’’s correctness with
respect to 7.

5. Create 7", a new test suite and test history for P’,
from T, T, and T".

Although each of these steps involves important prob-
lems, in this article we restrict our attention to step 1,
which involves the regression test selection problem.

2.2 Regression Test Selection Techniques

A variety of regression test selection techniques have
been described in the research literature. Rothermel
and Harrold [20] describe several families of techniques;
we consider three such families, along with two addi-
tional approaches often used in practice. We here de-
scribe these families and approaches, and give a repre-
sentative example of each — we utilize these representa-
tive examples in our experimentation.

2.2.1 Minimization Technigues. These techniques
(e.g., [, 9]) attempt to select minimal sets of tests from
T, that yield coverage of modified or affected portions
of P. One such technique requires that every program
statement added to or modified for P’ be executed (if
possible) by at least one test in 7.

2.2.2 Safe Techniques.  These techniques (e.g., [4, 11,
21]) select, under certain conditions, every test in T
that can expose one or more faults in P’. One such
technique selects every test in T' that, when executed
on P, exercised at least one statement that has been

deleted from P, or at least one statement that is new in
or modified for P’.

2.2.3 Dataflow-Coverage-Based  Techniques. These
techniques (e.g., [8, 15, 22]) select tests that exercise
data interactions that have been affected by modifica-
tions. One such technique selects every test in T that,
when executed on P, exercised at least one definition-
use pair that has been deleted from P’, or at least one
definition-use pair that has been modified for P’.

2.2.4 Ad Hoc / Random Techniques. ~ When time con-
straints prohibit the use of a retest-all approach, but no
test selection tool is available, developers often select
tests based on “hunches”, or loose associations of tests
with functionality. One simple technique randomly se-
lects a predetermined number of tests from T

2.2.5 Retest-All Technique. This techniques reuses
all existing tests. To test P’ the technique “selects”
all tests in 7.

2.3 Previous Empirical Work

Unless test selection, program execution with the se-
lected tests, and validation of the results take less time

than rerunning all tests, test selection will be imprac-
tical. Therefore, cost-effectiveness is one of the first
questions researchers in this area have studied.

Rosenblum and Weyuker [17, 18] and Rothermel and
Harrold [21] conducted empirical studies to determine
whether certain safe regression testing techniques are
cost-effective relative to retest all.

Rosenblum and Weyuker applied their regression test
selection algorithm, implemented in a tool called
TestTube, to 31 versions of the KornShell and its associ-
ated test suites. For 80% of the versions, their algorithm
required 100% of the tests. The authors note, however,
that the test suite for KornShell contained a relatively
small number (16) of test cases, many of which caused
all components of the system to be exercised.

In contrast, Rothermel and Harrold applied their re-
gression test selection algorithm, implemented in a tool
called DejaVu, to a variety of 100-500 line programs,
for which savings averaged 45%), and to a larger (50,000
line) software system, for which savings averaged 95%.

Thus, although our understanding of the issue is in-
complete, there is some evidence to suggest that test
selection can provide savings. Thus, further empirical
investigation of test selection is warranted.

To our knowledge, the only existing comparative study
of regression test selection techniques [16], by Rosen-
blum and Rothermel, compared the test selection re-
sults of TestTube and DejaVu. The study showed that
TestTube was frequently competitive with DejaVu in
terms of 1ts ability to reduce the number of test cases se-
lected, but that DejaVu sometimes substantially outper-
formed TestTube. The study did not consider relative
fault-detection abilities, or compare techniques other
than safe techniques.

2.4 Open Questions

None of the studies just described examined non-safe
techniques, and none compared more than two tech-
niques. Because non-safe techniques can discard fault-
revealing tests (test that reveal faults in the modified
program), the tradeoffs between test selection and fault
detection should be explored, and techniques compared.

Several questions arise when we compare safe and non-
safe techniques:

¢ How do techniques differ in terms of their ability to
reduce regression testing costs?

o How do techniques differ in terms of their ability to
detect faults?

e What tradeoffs exist between test suite size reduc-
tion and fault detection ability?

e When is one technique more cost-effective than an-
other?



e How do factors such as program design, location
and type of modifications, and test suite design af-
fect the efficiency and effectiveness of test selection
techniques?

3 THE EXPERIMENT

3.1 Hypotheses

H1: Safe techniques are more effective than minimiza-
tion techniques, but are much more expensive.

H2: Dataflow-coverage-based techniques are nearly as
effective as safe techniques, but can be more ex-
pensive.

H3: Dataflow-coverage-based techniques are more effec-
tive than minimization techniques, but are much
more expensive.

H4: Non-random techniques are more effective than
random techniques, but are much more expensive.

H5: The composition of the original test suite greatly
affects the costs and benefits of test selection tech-
niques.

3.2 Operational Model

To test our hypotheses we needed to measure the costs
and benefits of each test selection algorithm. To do
this we constructed two models: one for calculating the
cost of using a test selection technique, and another for
calculating the fault detection effectiveness of the re-
sulting test suite. We here restrict our attention to the
costs and benefits defined by these models, but there
are many other costs and benefits these models do not
capture. Some possible additions to the models are dis-
cussed 1n Section 5.

3.2.1 Modeling Cost-Effectiveness.  Leung and White
[13] present a cost model for selective retest techniques.
Their model considers both test selection and identi-
fication of inadequately tested components; we adapt
it to consider just the cost-effectiveness of a regression
test selection technique relative to that of the retest-all
approach.

In our model, the cost of regression test selection is
A+ E(T"), where A is the cost of the analysis required
to select tests and E(T') is the cost of executing and
validating the selected tests. The cost of the retest-all
technique is E(T), where E(T) is the cost of executing
and validating all of the tests.

This model makes several simplifying assumptions. It
assumes that the cost of executing tests is the same
under test selection and retest all, and that all test cases
have uniform costs [13]. It also assumes that all sub-
costs can be expressed in equivalent units, whereas, in
practice, they are often a mixture of CPU time, human
effort, and equipment costs [18§].

Given this model, we needed to measure two things: the
reduction in the cost of executing and validating tests,
and the average analysis cost. Given our assumptions,
however, the former can be measured in terms of test
suite size reduction, as (llTTll) For several reasons we did
not measure analysis costs directly. Most importantly,
we did not possess implementations of all techniques,
and instead were required to simulate techniques for
which we had no implementations. Furthermore, be-
cause the experimental design required us to run over
185,000 test suites, we utilized several machines. We did
not believe that the performance metrics taken from dif-
ferent machines were comparable. Instead, as we show
in Section 4.4, we try to identify how large analysis costs

can be before they outweigh reductions in test suite size.

3.2.2 Modeling Fault-Detection Effectiveness.  Test
selection techniques attempt to lower costs by running a
subset of an existing test suite, but this approach may
allow some fault-revealing tests to be discarded. Be-
cause an important benefit of testing is that it detects
defects, it 1s important to understand whether, and to
what extent, test selection reduces fault detection. We
considered two methods for calculating reductions in
fault detection effectiveness.

On a per-test basis: One way to measure a reduction
in the fault-detection effectiveness of a selective retest
technique, given program P and faulty version P’ is to
identify those tests that are in T and reveal a fault in
P’, but that are not in 7. This quantity can then be
normalized by the number of fault-revealing tests in 7.
One problem with this approach is that multiple tests
may reveal a given fault. In this case some tests could
be discarded without reducing effectiveness; however,
this measure penalizes such a decision.

On a per-test-suite basis: Another approach is to
classify the results of test selection into one of three
outcomes: (1) no test in T is fault-revealing, and, thus,
no test in 7" is fault-revealing; (2) some test in both T
and T is fault-revealing; or (3) some test in 7T is fault-
revealing, but no test in 7" is fault-revealing. Outcome 1
denotes situations in which the test suite is inadequate.
Outcome 2 indicates test selection that does not reduce
fault detection, and Outcome 3 captures those times in
which test selection compromises fault detection.

We selected the second method for use in our analysis.
Under this approach, for each program, our measure of
fault detection effectiveness is the percentage of cases in
which T contains no fault-revealing tests, (i.e., outcome
3 occurs.)

3.3 Experimental Instrumentation

3.3.1 Programs. For our study, we obtained six C
programs, with a number of modified versions and test



Program Functions | Lines | Versions | Avg T Size
replace 21 516 32 398
printtokens2 19 483 10 389
schedule2 16 297 10 234
schedule 18 299 9 225
totinfo 7 346 23 199
tcas 9 138 41 83

Table 1: Experimental Subjects.

suites for those programs. The subjects were collected
and constructed initially by Hutchins et al. [10] for
use in experiments with dataflow- and controlflow-based
test adequacy criteria; we modified some of the pro-
grams and versions slightly to enable their use with our
tools. Table 1 describes the subjects. The programs
range in size from 8 to 21 functions, and from 138 to
516 lines of code. We describe the other data in the
table in the following paragraphs.

3.83.2 Tests, Test Pools, Versions, and Test Suites.
Hutchins et al. constructed tests for these programs
by a process described in [10]. For each base program,
they created a test pool of black-box tests, using the cat-
egory partition method and Siemens Test Specification
Language tool [2, 14]. They then created additional
white-box tests by hand and added them to the test
pool, to ensure that each exercisable statement, edge,
and definition-use pair in the base program or its con-
trol flow graph was exercised by at least 30 tests.

Hutchins et al. created faulty modified versions of base
programs by manually modifying code in the base ver-
sion; in most cases they modified a single line of code,
and in a few cases they modified between 2 and 5 lines
of code. Their goal was to introduce faults that were as
“realistic” as possible, based on their experience with
real programs. To obtain meaningful results, they re-
tained only faults that were detectable by at least three
and at most 350 tests in the associated test pool. For
regression testing experiments, we consider the faulty
modified versions of base programs to be ill-fated at-
tempts to create modified versions of the base programs.
We can then study the relative effectiveness of various
test selection techniques at detecting the faults.

We used test pools to obtain two sets of test suites for
each program: edge-coverage-based and non-coverage-
based. To obtain edge-coverage-based test-suites, we
used the test pools for the base programs, and test cov-
erage information that we gathered for the tests, to gen-
erate 1000 edge-coverage-adequate test suites for each
program. More precisely, to generate a test suite T' for
base program P from test pool T, we considered each
edge in the control flow graph G for P. For each such

edge E, we obtained a list of tests 7,(E) C 7, that
had exercised that edge. We then used the C pseudo-
random-number generator “rand”, seeded initially with
the output of the C “time” system call, to obtain an in-
teger which we treated as an index ¢ into 7,,(E) (modulo
|T,(E)|). We added test i from T, (E) to T if it was not
already present in 7. Table 1 lists the average sizes of
the test suites that we generated.

For each program, we also generated 1000 non-coverage-
based test suites. To generate the kth non-coverage-
based test suite T for base program P (1 < k <
1000), we determined n, the number of tests in the kth
coverage-based test suite, and then chose tests randomly
from the test pool for P and added them to T until T’
contained n tests. This process yielded non-coverage-
based test suites of the same size as the coverage-based
suites.

3.3.83 Test Selection Tools. To perform the experi-
ments, we required implementations or simulations of
several regression test selection tools. As a minimiza-
tion technique, we created a simulator tool that selects
a minimal set of tests 7" such that T" is edge-coverage-
adequate for edges in the control flow graphs for P or
P’ that have been modified. As a safe technique, we
utilized an implementation of Rothermel and Harrold’s
regression test selection algorithm, implemented as a
tool called DejaVu, and available as a component of the
Aristotle program analysis system: the system and
tool are described in [7, 19]. As a dataflow-coverage-
based technique, we simulated a tool by manually in-
specting program modifications, and generating a list
of tuples that represent the definition-use pairs that are
affected by the modifications. We then used a data-flow
testing tool [6] to identify the tests in the test suite that
satisfy the definition-use pairs. As a random(n) tech-
nique we created a tool that randomly selects n% of the
tests from the suite. The retest-all technique required
no implementation.

3.4 Experimental Design

3.4.1 Variables. 'The experiment manipulated three
independent variables:

1. the subject program (6 programs, each with a va-
riety of modified versions).

2. the test selection technique (safe, dataflow, min-
imization, random(25), random(50), random(75),
retest all); and

3. test suite composition (edge-coverage-adequate or
random).

On each run, with program P, version P’, technique M,
and test suite 7', we measured:

1. the ratio of tests in the selected test suite 7" to
tests in the original test suite; and



2. whether one or more tests in 7" reveals the fault in
P

Each combination of program, version, and technique
had 100 associated test suites. From these 100 data
points we computed two dependent variables.

1. average reduction in test suite size, and
2. fault detection effectiveness (the percentage of test
suites in which 7" does not reveal a fault in P’.)

3.4.2 Design.  This experiment uses a full-factorial
design with 100 repeated measures. That is, for
each subject program, we selected 100 edge-coverage-
adequate and 100 random test suites from the test-suite
universe. For each test suite, we then applied each test
selection method and evaluated the fault detection ef-
fectiveness of the resulting test suites.

3.4.83 Threats to Internal Validity.
nal validity are influences that can affect the depen-
dent variables without the researcher’s knowledge. Our
greatest concern is instrumentation effects that can bias
our results.

Threats to inter-

Instrumentation effects are caused by differences in the
test process inputs: the code to be tested, the locality
of the program change, or the composition of the test
suite. In this study, we use two different criteria for
composing test suites: one in which test suites are ran-
domly selected from the test pool, and one in which the
test suite must provide edge coverage. However, at this
time we do not control for the structure of the subject
programs, nor for the locality of program changes. To
limit problems related to this, we run each test selection
algorithm on each test suite and each subject program.

3.4.4 Threats to External Validity. 'Threats to exter-
nal validity are conditions that limit our ability to gener-
alize the results of our experiment to industrial practice.
We considered two sources of such threats: (1) artifact
representativeness, and (2) process representativeness.

Artifact representativeness is a threat when the sub-
ject programs are not representative of programs found
in industrial practice. There are several such threats
in this experiment. First, the subject programs are of
small size. As discussed earlier, there is some evidence
to suggest that larger programs allow greater test set re-
duction, although at higher cost than small programs.
Thus, larger program may be subject to different cost-
benefit tradeoffs. Also, there is exactly one seeded er-
ror in every subject program. Industrial programs have
much more complex error patterns.

Threats regarding process representativeness arise when
the testing process we use is not representative of the
industrial one. This may also endanger our results be-
cause our test suites may be more or less comprehensive

than those created in practice. Also, our experiment
mimics a corrective maintenance process, but there are
many other times in which regression testing might be
used.

3.4.5 Threats to Construct Validity. Threats to con-
struct validity arise when measurement instruments do
not adequately capture the concepts they are supposed
to measure. For example, in this experiment our mea-
sures of cost and effectiveness are very coarse. For ex-
ample, they treat all faults as equally severe.

3.4.6 Analysis Strategy. Our analysis strategy has
three steps. First we summarize the data. Then we
compare the ability of the test selection methods to re-
duce test suite size, and we compare the fault-detection
effectiveness of the resulting test suites. Here, we es-
tablish that, in general, larger reductions in test suite
size lead to greater reductions in fault detection effec-
tiveness. Finally, we make several comparisons between
nonrandom (i.e., minimization, safe, and dataflow) and
random methods. For example, in one analysis we ex-
plore how large analysis costs can become before the
non-random methods become less cost-effective than
random ones.

4 DATA AND ANALYSIS

Two sets of data are important for this study: the test
selection and the fault-detection summaries. This in-
formation is captured for every test suite, every subject
program, and every test selection method. The test se-
lection summary gives the size (in number of tests) of
T and 7. From this information we calculate the per-
centage reduction in test suite size. The fault-detection
summary shows whether 7' and 7" contain any fault-
revealing tests. From this information we determine
whether the test selection technique compromised fault-
detection effectiveness.?

In this article, we frequently use box plots (e.g., Figure
1) to represent data distributions. In these plots, a box
represents each distribution. The box’s height spans
the central 50% of the data and its upper and lower
ends mark the upper and lower quartiles. The bold
dot within the box denotes the median. The dashed
vertical lines attached to the box indicate the tails of
the distribution; they extend to the standard range of
the data (1.5 times the inter-quartile range). All other
detached points are “outliers”. We also use arrays of
boxplots (a type of Trellis display [3]) to show data dis-
tributions that are conditioned on one or more other
variables (e.g., Figure 2.)

By conditioned, we mean that data are partitioned into
subsets, such that the data in each subset have the same

1Readers who wish to examine the data should contact Adam
Porter.
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Figure 1: Fault detection effectiveness by program.

value for the conditioning variable. For example Figure
3 depicts the fault detection effectiveness for test suites
created by different methods, conditioned on the pro-
gram on which the test suite was run. That means that
the data is partitioned into six subsets; one for each pro-
gram. And then we draw one boxplot for each subset.

4.1 Test Suite Characteristics

Table 1 provides the average test suite sizes for the six
programs. We show the data from the coverage-based
suites only, because by construction, the random suites
have the same sizes. The average test suite size ranges
from about 100 tests for fcas to about 400 for replace.

Figure 1 depicts the distribution of fault detection ef-
fectiveness for all test suites over the six programs. We
see that effectiveness differs substantially across differ-
ent programs. For example, the median fault detection
effectiveness for tcas is only about 70%. We can also
see that some combinations of test suites and program
versions have an effectiveness at or near 0 (e.g., both
replace and schedule? exhibit outliers at 0%).

4.2 Test Suite Size Reduction

Figure 2 depicts the ability of each method to reduce
test suite size, conditioned on program. For these pro-
grams, we see that the random methods extract a con-
stant percentage of the tests (by construction) and that
minimization (by nature of the modifications made to
the subjects) almost always (91%) selects only 1 test.
Interestingly, the safe and the dataflow methods have
nearly identical performance (median reduced suite size
is 74% for coverage suites and 58% for random).

4.3 Fault Detection

Figure 3 depicts the fault-detection effectiveness of test
suites selected with each method, conditioned on pro-

gram. Overall, we found that minimization had the
lowest fault-detection effectiveness. The effectiveness
of the random methods increased with test suite size,
but that rate of increase diminished as size increased.
Again the safe and dataflow methods exhibited similar
median performances, but the dataflow distribution ex-
hibited greater variance. This occurs because in some
cases dataflow allows faults to escape, while the safe
method does not.

4.4 Cost-Benefit Tradeoffs

We find a clear tradeoff between test suite size and de-
tection rate. As the size of the selected test suite de-
creases so does fault-detection effectiveness. This rela-
tionship is depicted in Figure 4.

If we do not consider the analysis costs of non-random
methods, then the decision to use a particular selection
method will depend on the penalty for missing faults
in relation to the cost of running more tests. This will
obviously depend on many context-specific factors.

In this section we explore the effect of analysis costs for
non-random methods on the relationships in Figure 4.
To do this we examine how each non-random method
compares to random methods and to each other. We
assume that the analysis costs for non-random methods
can be stated in terms of the cost to run a single test
(analysis costs for random methods are 0), and then
we characterize how many tests can be run (i.e., how
long analysis can take) before the non-random method
becomes less cost-effective than random ones.

We begin with minimization, the rule with the smallest
test suites and lowest fault-detection effectiveness. We
will compare its detection rate to that of a randomized
rule calibrated to have the same total computational
cost. Qur goal is to find an upper bound, &, on the
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Figure 4: Fault-detection effectiveness and test suite size, irrespective of analysis costs.

analysis cost of minimization. That is, if the analysis
costs are greater than the cost of running k tests, then
there exists a random method that is less expensive and
has the same fault-detection effectiveness.

We then perform similar analyses comparing the safe
and the dataflow method to other randomized rules,
retest all, and to each other. After each comparison
we discuss our interpretations and their limitations.

4.4.1 Minimization wvs. Randomization. The test
suites selected by minimization were both the small-
est (median of 1 test) and the least effective (< 0.05%).
(Of course, if the programs contained multiple changes,
larger minimization suites would be selected.) Other
methods typically selected test suites with on the order
of 100 tests, and were much more effective. Because
minimization does choose very few tests, there may be
situations in which its use is appropriate, namely when
tests are very expensive to run and missed faults are not
considered excessively costly. Therefore, further study
is warranted. In particular, we are also interested in
knowing how much analysis cost minimization can in-
cur before a random method would be preferable.

In this analysis we assume that a method’s analysis time
is equivalent to the cost of running & tests. We then de-
termine a critical value of k£ for which there is a random
reduction rule whose performance is as good or better
than minimization’s. If analysis costs exceed this crit-
ical value, then a random reduction rule may be more
cost-effective.

Ideally we would like to compare minimization to a rule
that chooses 100p% tests at random, where this is equal
to the average size of minimization test suites. In our
experiment we only constructed random test suites with
p € {0.25,0.5,0.75,1} (and, in effect, p = 0). So we

simulate the long-run behavior of an arbitrarily-sized

random method by randomizing over values of p for
which we have test suites. For instance, if we want to
simulate random(5), we use random(25) with probabil-
ity 0.2, and do no regression testing at all (random(0))
with probability 0.8 (our experiments suggest that this
approach underestimates the effectiveness of the true
random method, and, thus, overestimates the value of
k we are looking for).?

For a fixed trial value of k, and program version, we
computed the average test suite size using minimiza-
tion (call this z). We then used either random(25) or
random(0), with the distribution chosen to ensure that
the average size of these test suites was x4+ k. We then
compared the detection effectiveness of the two meth-
ods. We continued to adjust & until the detection effec-
tiveness was equal.

We found that for & = 2.5, the randomized rule had
higher detection rates in 62 program-versions, mini-
mization had higher detection rates in 58 program-
versions, and there were 5 program-versions where nei-
ther scheme ever found the fault. (These results are cal-
culated with respect to the coverage-based test suites.
For random test suites, k& was 2, so that random test
suites are perhaps slightly more unfavorable to mini-
mization.)

4.4.2 Safe vs. Dataflow. 1In our experiment, the safe
and dataflow methods behaved very similarly. Their
fault-detection performances were nearly identical, and
for many versions they chose the same average numbers
of tests per test suite. In all but three versions, both
methods selected test suites equivalent in their ability

2Note that our simulation is not a practical selection rule be-
cause it assumes that we know a priori how many tests will be
selected. Nevertheless, it does provide a measure of the usefulness
of test selection algorithms.



to reveal fault-revealing tests. Consequently, the results
for the safe and dataflow techniques agree so closely that
the comparisons of safe with randomized methods and
“retest all” in the following sections are nearly identical
to the results for dataflow. However, dataflow coverage
techniques may require more analysis time than safe
techniques.

4.4.83 Safe vs. Randomization. The analysis here is
similar to the previous analyses, except that the safe
method always found the fault if a fault-revealing test
existed. Therefore no random method has the same
detection effectiveness as the safe method. Instead, we
look for random methods that found a fixed percentage
(100(1 —p)%) of the faults. Then, we again determine a
value of k, such that there is a randomized method with
the same total cost as the safe method and 100(1 — p)%
the detection effectiveness.

We found that there exists a randomized rule with
the same average test suite size (i.e., k=0) as the safe
method that finds faults 93% (p = 0.07) as often in half
the program-versions as the safe method does. When
k = 0.5 there is a randomization rule as costly as the
safe method that detects faults 95% as often in half the
program-versions. When k& = 6, the randomization rule
detects faults at least 98% as often as the safe method
in half the program-versions.

4.4.4 Safe vs. Retest all ~ The safe method always
found all faults that could be found given the test suites
used. Therefore, a safe method is preferable to running
all tests in the test suite if and only if analysis costs
are less than the costs of running the unselected tests.
Figure 2 contains data showing the sizes of test suites
selected by the safe method. It demonstrates that test
suite reduction depends dramatically on the program:
selected test suites for schedule2 were typically 99% as
large as the original suites, while those for printtokens2
are about 37% as large.

5 SUMMARY AND CONCLUSIONS

In this article we present initial results of an empirical
study of selective regression techniques. This study ex-
amined some of the costs and benefits of several test
selection methods. Our results, although preliminary,
highlight several differences among the techniques, ex-
pose essential tradeoffs, and provide an infrastructure
for further research by ourselves and others.

As we discussed earlier, this experiment, like any other,
has several limits to its validity. Keeping this in mind,
we drew several observations from this work.

e Minimization produced the smallest and the least
effective test suites. Although fault detection is ob-
viously important, there are cases where testing is

very expensive. In these cases minimization may
be cost-effective. Nevertheless, for the programs
and test suites we studied, random selection of just
slightly larger suites (only 2.5 more tests) yielded
equally fault detection results equivalent to those of
minimization (on average) with none of the analysis
costs. One limitation here is that “on the average”
applies to long-run behavior. Half of the time the
random method was as effective as minimization,
half of the time it was not. If greater confidence
is required, then the random methods will need to
select more than 2.5 additional tests. Another lim-
itation is that, in practice, one cannot know how
many tests minimization (or any other test selec-
tion algorithm) would pick without actually run-
ning it.

e The safe and dataflow methods had nearly equiva-
lent average behavior in terms of cost-effectiveness,
typically detecting the same faults, and select-
ing the same size test suites. However, because
dataflow-coverage-based techniques require at least
as much analysis as the two most efficient safe tech-
niques [4, 21], we saw little reason to recommend
dataflow if test selection alone is the goal. However,
dataflow techniques can be useful in other parts of
regression testing, such as in identification of por-
tions of 7" that are not adequately tested by 7. In
other words, our model does not capture all possi-
ble costs or benefits of selective regression testing,
and thus, may be too coarse for some situations.

e The safe method found all faults for which we had
fault-revealing tests while selecting 74% of the tests
on the average. However, we saw that for several
programs it could not reduce the test suites at all.
Also, we found that, on the average, only slightly
larger random test suites could be nearly as ef-
fective. Again, we have to remember that we are
making a probabilistic assessment. This raises an
important measurement question. That 1s, when
should we analyze methods like these on a case by
case basis, and when is an amortized analysis more
appropriate.

e We found that our results were sensitive not only
to the selection methods we used, but also to the
programs, the characteristics of the changes, and
the composition of the test suites. We believe
that it important to understand more precisely how
these factors affect our methods. Without this
information, we may mistake the effect of a non-
representative workload for differences in methods.

We are continuing this family of experiments. In the fu-
ture, we plan to (1) improve our cost models to include



factors such as testing overhead and to better handle
analysis costs, (2) extend our analysis to multiple types
of faults, (3) develop time-series-based models, captur-
ing notions of amortized analysis and non-constant fault
densities, and (4) rerun these experiment using larger
programs with more complex fault distributions.
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